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Abstract

In this paper, we present a framework that enables computer model evaluation oriented

towards answering the question:
Does the computer model adequately represent reality?

The proposed validation framework is a six-step procedure based upon Bayesian statistical
methodology. The Bayesian methodology is particularly suited to treating the major issues
associated with the validation process: quantifying multiple sources of error and uncertainty in
computer models; combining multiple sources of information; and updating validation assess-
ments as new information is acquired. Moreover, it allows inferential statements to be made
about predictive error associated with model predictions in untested situations.

The framework is implemented in two test bed models (a vehicle crash model and a resistance

spot weld model) that provide context for each of the six steps in the proposed validation process.

*This research was supported by grants from General Motors and the National Science Foundation (Grant DMS-
0073952) to the National Institute of Statistical Sciences.
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1 Introduction

1.1 Motivation and overview

We view the most important question in evaluation of a computer model to be
Does the computer model adequately represent reality?

In practice, the processes of computer model development and validation often occur in concert;
aspects of validation interact with and feed back to development (e.g., a shortcoming in the model
uncovered during the validation process may require change in the mathematical implementation).
In this paper, however, we address the process of computer model development only to the extent
that it interacts with the framework we envision for evaluation; the bulk of the paper focuses
instead on answering the above basic question. In particular, we do not address the issue of code
verification. General discussions of the entire V&V process, with discussion of many other pertinent
issues, can be found in Roache (1998), Oberkampf and Trucano (2000), Cafeo and Cavendish (2001),
Easterling (2001), Pilch et al. (2001), and Trucano et al. (2002).

Tolerance bounds: To motivate the approach we take to model evaluation, it is useful to begin at
the end, and consider the type of outputs that will result from the methodology. Only very rarely
will it be the case that a computer model can be said to be a completely accurate representation
of the real process being modeled, and hence we do not primarily focus on answering the yes/no
question “Is the model correct?”! In the vast majority of the cases, the relevant question is instead
“Does the model provide predictions that are accurate enough for the intended use of the model?”
While there are several concepts within this question that deserve — and will be given — careful
definition, the central issue is simply that of assessing the accuracy of model predictions. This will
be done by presenting tolerance bounds, such as 5.17 £ 0.44, for a model prediction 5.17, with the
interpretation that there is a specified chance (e.g., 80%) that the corresponding true process value
would lie within the specified range. Such tolerance bounds should be given whenever predictions
are made, i.e., they should routinely be included along with any predictions arising from use of the
model.

This focus on giving tolerance bounds, rather than stating a yes/no answer as to model validity,

arises for three reasons:

1. Models rarely give highly accurate predictions over the entire range of inputs of possible

interest, and it is often difficult to characterize regions of accuracy and inaccuracy.

2. The degree of accuracy that is needed can vary from one application of the computer model

to another.

3. Tolerance bounds incorporate model bias, the principal symptom of model inadequacy; accu-

racy of the model cannot simply be represented by a variance or standard error.

Tt is possible to ask and answer this question within the proposed framework — see Section 9 — but the question
is often not a relevant question.



All these difficulties are obviated by the simple device of routinely presenting tolerance bounds
along with model predictions. Thus, at a different input value, the model prediction and tolerance
bound might be 6.28 + 1.6, and it is immediately apparent that the model is considerably less
accurate at this input value. Either of the bounds, 0.44 or 1.6, might be acceptable or unacceptable

predictive accuracies, depending on the intended use of the model.

Bayesian analysis: Producing tolerance bounds is not easy. Here is a partial list of the hurdles

one faces.

e There are uncertainties in model inputs or parameters, and these uncertainties can be of a

variety of types: based on data, expert opinion, or simply an ‘uncertainty range.’
e When model runs are expensive, only limited model-run data may be available.
e Field data of the actual process under consideration may be limited and noisy.
e Data may be of a variety of types, including functional data.
e Model-run data and field data may be observed at different input values.

e One may desire to ‘tune’ unknown parameters of the computer model based on field data,

and at the same time (because of sparse data) apply the validation methodology.

e There may be more tuning parameters than data, so that the tuning parameters are not even
identifiable.

e The computer model itself will typically be highly non-linear.
e Accounting for possible model bias is challenging.

e Validation should be viewed as an accumulation of evidence to support confidence in the
model outputs and their use, and the methodology needs to be able to update its current

conclusions as additional information arrives.

Overcoming these hurdles requires a powerful and flexible methodology; the only one we know
that can accommodate all of these different factors is the Bayesian approach to assessment and
analysis of uncertainty, together with its modern computational implementation via Markov Chain
Monte Carlo analysis (see, e.g., Robert and Casella, 1999). The Bayesian approach is discussed in

Section 5.

Bridging two philosophies: At the risk of considerable oversimplification, it is useful to catego-
rize the approaches to model evaluation as being in one of two camps. In one camp, evaluation is
performed primarily by comparing model output to field data from the real process being modeled.
The common rationale for this philosophy is the viewpoint that the only way to see if a model
actually works is to see if its predictions are correct. We will call this the predictive approach to

evaluation.



The second camp primarily focuses on the model itself, and tries to assess the accuracy or
uncertainty corresponding to each constructed element of the model. The common rationale for
this philosophy is that, if all the elements of the model (including computational elements) can be
shown to be correct, then logically the model must give accurate predictions. We will call this the
physical approach to model evaluation.

Our own view lies primarily in the predictive camp, in that a modeler faces considerable diffi-
culty in convincing others that all elements of the model have been correctly constructed, without
demonstration of validity on actual field data. We recognize that a lack of sufficient field data often
drives modelers to focus on validation through the physical approach, but an absence of field data
will always leave the model suspect.

That said, it is worth noting that Bayesian methodology bridges both these philosophies. First,
one can specify a prior probability that the computer model is correct and update this probability
based on any available data. Thus someone in the physical camp might declare that their prior
probability is 0.96 that the model is correct. If field data is then obtained, a Bayesian computation
(see Section 9) might yield a posterior probability of 0.99 (in the case of supporting data) or 0.009
(in the case of non-supporting data) that the model is correct. Those in the predictive camp
(including ourselves) believe that such extreme prior specification is excessively informative and
only rarely justifiable.

Even in the predictive approach, however, Bayesian analysis allows utilization of prior infor-
mation about elements of the model from the physical approach (either expert opinion or partial
scientific knowledge), together with field data, in the construction of the tolerance bounds for model
predictions; it incorporates whatever information is available to produce defensible quantification
of the adequacy of the model’s representation of reality. Furthermore, such physical knowledge can

significantly reduce the amount of field data that is needed for predictive validation.

Side benefits of the methodology: Because the investment in understanding and using this
methodology is admittedly significant, we mention some of the side benefits that arise from the

implementation as done in the body of this paper.

1. When a bias in the model is detected by comparison with field data, the methodology auto-
matically allows one to adjust the prediction by the estimated bias, and provides tolerance
bounds for this adjusted prediction. This can result in considerably more accurate predictions

than use of the model alone (or use of the field data alone).

2. A fast approximation to the computer model is available for use in situations, such as opti-

mization, where it may be too expensive to use the computer model itself.

3. Predictions and tolerance bounds can be given for applications of the computer model to new
situations in which there is little — or no — field data, assuming information about ‘related’

scenarios is available.

A Caveat: The process of model validation is inherently highly statistical, and is inherently a

hard statistical problem. This is not to say that the scientific and mathematical sides of the V&V



process are not also of central importance, but the basic problem cannot be solved without use
of sophisticated statistical methodology. Indeed, the statistical problem is so hard that one rarely
sees analyses that actually produce tolerance bounds for computer model predictions.

The intent of this paper is essentially to provide a ‘proof of concept,” that it is possible to
provide tolerance bounds for predictions of computer models, while taking into account all the
uncertainties present in the problem. However, the computations required in the methodology we
propose can be intensive, especially when there are large numbers of model inputs, large numbers
of unknown parameters, or a large amount of data (model-run or field). The test bed examples we
consider in this paper are relatively modest in these dimensions, and we have yet to see how the full
methodology scales-up to more complex settings (although some components of the methodology
are known to scale-up to considerably more complex situations). It is likely that a variety of

simplifications and/or innovations will be needed in such settings in order to apply the methodology.

Overview: In this paper we will restrict consideration to computer models that are deterministic,
as opposed to stochastic?. Section 1.2 provides an outline of the framework we recommend for
computer model evaluation. Two testbed models are introduced in Section 1.3, a resistance spot
welding model and a crash model. Background details of the test bed models are in Appendices A
and B.

The proposed methodology for model evaluation is presented in Sections 2 through 6, with
illustrations on the two test bed models. Sections 7 through 10 introduce a variety of generalizations
that are needed to deal with specific contexts.

To prevent notational overload, we introduce notation and concepts as they arise in the eval-
uation framework. Appendices C, D, E and F present some of the technical details needed for

implementation of the methodology.

1.2 Sketch of the framework

Validation can be thought of as a series of activities or steps. These are roughly ordered by
the sequence in which they are typically performed. The completion of some or all in the series of
activities will typically lead to new issues and questions, requiring revision and revisiting of some or
all of the activities, even if the model is unchanged. New demands placed on the model and changes
in the model through new development make validation a continuing process. The framework must

allow for such dynamics.

Step 1. Specify model inputs and parameters with associated uncertainties or ranges
- the Input/Uncertainty (I/U) map. This step requires considerable expertise to help set
priorities among a (possibly) vast number of inputs. As information is acquired through undertaking

further steps of the validation process, the I/U map is revisited, revised and updated.

Step 2. Determine evaluation criteria. The defining criteria must account for the context in

2In Section 10.6, a generalization to allow for numerical ‘wobble’ in a deterministic model is given; it can also be
used to accomodate stochastic models.



which the model is used, the feasibility of acquiring adequate computer-run and field data, and the
methodology to permit an evaluation. In turn the data collection and analyses will be critically
affected by the criteria. Moreover, initially stated criteria will typically be revisited in light of

constraints and results from later analyses.

Step 3. Data collection and design of experiments. Both computer and field experiments
are part of the validation (and development) processes; multiple stages of experimentation will be
common. The need to design the computer runs along with field experiments can pose non-standard
issues. As noted above, any stage of design must interact with the other parts of the framework,

especially the evaluation criteria.

Step 4. Approximation of computer model output. Model approximations (fast surrogates)
are usually key for enabling the analyses carried out in Step 5; fast surrogates are essential also

when the model is used for optimization of e.g., a manufacturing product design.

Step 5. Analyses of model ouput; comparing computer model output with field data.
Uncertainty in model inputs will propagate to uncertainty in model output and estimating the
resulting output distribution is often required. The related ‘sensitivity analysis’ focuses on ascer-
taining which inputs most strongly affect outputs, a key tool in refining the I/U map.

Comparing model output with field data has several aspects.

The relation of reality to the computer model (“reality = model + bias”)

Statistical modeling of the data (computer runs and field data where “field data = reality +

measurement error”)
— Tuning/calibrating model input parameters based on the field data
— Updating uncertainties in the parameters (given the data)
— Accuracy of prediction given the data

The methods used here rely on a Bayesian formulation; the details are in Section 5. The

fundamental goal of assessing model accuracy is addressed there.

Step 6. Feedback information into current validation exercise and feed-forward in-
formation into future validation activities. Feedback refers to use of results from Step 5 to
improve aspects of the model, as well as to refine aspects of the validation process. Feed-forward
refers to the process of utilizing validations of current models to predict the validity of related

future models, for which field data are lacking.

1.3 Testbeds

The test beds provide context for implementing each activity and also prompt consideration of a
full variety of issues. The description of the validation framework, in Section 2, does not capture

the details and nuances encountered in any implementation. The details of implementation are,



indeed, the essence of the validation process and the complexities they engender have, in the past,
been a barrier to performing acceptable validations. This fleshing out of details for the test beds
is done throughout Sections 2-8 where each activity/step of validation is accompanied by explicit
application to the test bed models. The result is the addition of concreteness to the generalities of
the methods.

Testbed 1. The Resistance Spot Welding Model (SPOT WELD): In resistance spot
welding, two metal sheets are compressed by water-cooled copper electrodes, under an applied
load, L. Figure 14 in Appendix A is a simplified representation of the spot weld process,
illustrating some of the essential features for producing a weld. A direct current of magnitude C
is supplied to the sheets via the two electrodes to create concentrated and localized heating at
the interface where the two sheets have been pressed together by the applied load (the so-called
faying surface). The heat produced by the current flow across the faying surface leads to melting
and, after cooling, a weld “nugget” is formed.

The resistance offered at the faying surface is particularly critical in determining the mag-
nitude of heat generated. Because contact resistance at the faying surface, as a function of
temperature, is poorly understood a nominal function is specified and “tuned” to field data.
The effect of this tuning on the behavior of the model is the focus of the test bed example.

The physical properties of the materials will change locally as a consequence of local increase
in temperature. Young’s modulus and the yield stress of the sheet will fall (that is, the metal
will “soften”) resulting in more deformation and increase in the size of the faying contact sur-
face, further affecting the formation of the weld. At the same time, the electrical and thermal
conductivities will decrease as the temperature rises; all of which will affect the rate of heat
generation and removal by conduction away from the faying surface.

The thermal/electrical /mechanical physics of the spot weld process is modeled by a coupling
of partial differential equations that govern heat and electrical conduction with those that govern
temperature-dependent, elastic/plastic mechanical deformation (Wang and Hayden, 1999).

Finite element implementations are used to provide a computer model of the electro-thermal
conceptual model. Similarly, a finite element implementation is made for the equilibrium and
constitutive equations that comprise the conceptual model of mechanical/thermal deformation.
These two computer models are implemented using a commercial code (ANSYS).

Details of the inputs and outputs of the models are in Appendix A and are summarized in
Table 1. The particular issues faced are spelled out as we proceed through the exposition in the

following sections.

Testbed 2. The Crash Model (CRASH): The effect of a collision of a vehicle with a barrier
is routinely done through a computer model implemented as a non-linear dynamic analysis
code using a finite element representation of the vehicle. Proving ground tests with prototype
vehicles must ultimately be made to meet mandated standards for crashworthiness. But, the
computer models play an integral part in the design of the vehicle to assure crashworthiness
before manufacturing the prototypes. How well the models perform is therefore crucial to the
manufacturing process.

CRASH is implemented via a commercial code, LS-DYNA. Our focus is on the velocity
changes after impact at key positions on the vehicle, such as the driver seat and radiator.
Details of the model and a typical set of inputs are in Appendix B. Geometric representation

of the vehicle and the material properties play critical roles in the behaviour of the vehicle after



impact and the necessary detailing of these inputs leads to very costly (in time) computer runs.
Field data involve crashing of prototype vehicles and therefore costly in dollars. CRASH is then

inherently data-limited, presenting a basic challenge to assessing the validity of the model.
There are many variables and sources of uncertainty in the vehicle manufacturing process
and proving ground test procedures that, in turn, induce uncertainties in the test results. The
acceleration and velocity histories of two production vehicles of the same type, subjected to
30mph zero degree rigid barrier frontal impact tests, as shown in Figure 15 demonstrate the
differences in “replicate” crashes. There are a variety of materials used in components of the
vehicle and, consequently, a variety of material properties to deal with, not all of which may be

satisfactorily specified.

2 Understanding the Model and Its Uses (Steps 1 and 2)

The beginning of the validation process is understanding the uncertainties associated with the

computer model itself, and determining how the model is to be used.

2.1 Step 1. Specify model inputs and parameters with associated uncertainties
or ranges - the Input/Uncertainty (I/U) Map

Understanding what is known and not known about a computer model can be important in its evalu-
ation. A convenient way to organize such information is through what we call the Input/Uncertainty
map. (This is related to the idea of a PIRT - see Pilch et al., 2001.) The map has four attributes:

a) A list of model features or inputs of potential importance

b) A ranking of the importance of each input

¢) Uncertainties, either distributions or ranges of possible values, for each input

d) Current status of each input describing how the input is currently treated in the model.

The I/U map is dynamic: as information is acquired and the validation process proceeds, the
attributes, especially b)-d), will change or be updated. This will become more evident following
Steps 4-6.

The inputs in the map are drawn from the development process. They will include parameters
inherent to the scientific and engineering assumptions and mathematical implementation, and nu-
merical parameters associated with the implementing code; in short, all the ingredients necessary
to make the model run. Because this list can be enormous, the more important parameters must
be singled out to help structure the validation process by providing a sense, albeit imperfect, of
priorities. We adopt a scale of 1-5 for ranking the inputs with 1 indicating only minor likely impact

on prediction error and 5 indicating significant potential impact.
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SPOT WELD: The purpose of the spot weld model is to investigate the process parameters
for welding aluminum. The I/U map of the model is in Table 1. The list of inputs in Table
1 is more fully described in Appendix A. Initially, only three inputs have rank 5 based on
the model developer’s assessment. These three parameters (and gauge) are the focus of the
initial validation experiments; earlier experiments by the model developer led to the impact
assessments appearing in the table. The controllable parameters, current, load, and gauge, will
be given ranges when the experiments are designed. In the current context, validation is with
laboratory data and “no uncertainty” is appropriate when current and load levels are set in
the laboratory. If, however, validation is required at the production level then uncertainties in

current and load may be significant. In brief, the I/U map is context dependent.

There are several specific items connected with the I/U map in Table 1 that are worth
noting. First, the most significant specified uncertainty (impact factor 5) in the model elements
is that of the contact resistance. The model incorporates contact resistance through an equation
that, for the faying surface, has a multiplicative constant v about which it is only known that
u lies in the interval [0.8,8.0]. It will be necessary to tune this parameter of the model with
field data. The second most significant uncertainty in the model (impact factor 4) is the linear
approximation for stress/strain. The modeler was unable to specify the uncertainty regarding
this input, and so error in this element will simply have to enter into the overall unknown (and

to be estimated) bias of the model.

Table 7 in Appendix B gives the corresponding I/U map for the crash model.

Initial impact assessments will be based on experience to reflect a combined judgment of the
inherent sensitivity of the input (the extent to which small changes in the input would affect the
output) and the range of uncertainty in the input. These will be revised through sensitivity analyses
and ‘tuning with data’ that occur later in the process. Inputs about which we are “clueless” might
be singled out for attention at some point along the validation path but the effect of “missing”
inputs (i.e., non-modeled features) may never be quantifiable or only emerge after all effects of
“present” inputs are accounted for.

In model validation, considerable attention is often paid to the issue of numerical accuracy of
the implemented model — for instance, in assessing if numerical solvers and finite element (FEM)
codes have ‘converged’ to the solution of the driving differential equations. This is an important
consideration and, as detailed in Cafeo and Cavendish (2001), is an issue of model and code ver-
ification. It should ideally be addressed early in the model development process and prior to the
validation activity emphasized in this paper.

It is often the case, however, that convergence will not have been obtained; e.g., modelers may
simply use the finest mesh size that is computationally feasible, recognizing that this mesh size
is not sufficient to have achieved convergence. The method we are describing for validation still
works. The error introduced by a lack of convergence becomes part of the ‘bias’ of the model that
is to be assessed (see Section 3). The I/U map should, of course, clearly indicate the situation
involving such convergence. This means that parameters such as grid size may be confounded with

other assumptions about the model making it more difficult to improve the model. Ideally, this
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INPUT IMPACT | UNCERTAINTY CURRENT
STATUS
Geometry electrode
symmetry-2d 3 unspecified fixed
cooling channel 1 unspecified fixed
gauge unclear unspecified 1, 2mm
materials unclear | Aluminum (2 types fixed
x 2 surfaces)
Stress/ 4 unspecified fixed
strain piecewise linear (worse at high T)
Cy,Ch, 04 3 unspecified fixed
1/o=u-f; f fixed 3 unspecified fixed by modeler
contact u =0 tuned to data
resistance (electrode/sheet) 5 u € [0.8,8.0] for 1 metal
u =tuning (faying)
thermal 2 unspecified fixed
conductivity
current 5 no uncertainty controllable
load 5 no uncertainty controllable
mass density (p) 1 unspecified fixed
specific heat (c) 1 unspecified fixed
mesh 1 unspecified convergence/speed
numerical M/E coupling time 1 unspecified compromise
parameters boundary 1 unspecified
conditions fixed
initial conditions 1 unspecified fixed

Table 1: The I/U map for the spot weld model

could be done through designed experiments, varying values of the numerical parameters in order

to assess numerical accuracy.

2.2 Step 2. Determine evaluation criteria

Evaluation of a model depends on the context in which it is used. Two key elements of evaluation

criteria are:
e Specification of an evaluation criterion (or criteria) defined on model output
e Specification of the domain of input variables over which evaluation is sought.

Even if only one evaluation criterion is initially considered, other evaluation criteria inevitably
emerge during the validation process. In fact, it is often desirable to have multiple outputs to
compare with reality to help assess the usefulness of the model. The overall performance of the
model may then depend on the outcomes of the validation process for several evaluation criteria —
the model may fail for some and pass for others — leading ultimately to follow-on analyses about

when and how the model should be used in prediction.
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Informal evaluations are typical during the development process — does the computer model
produce results that appear consistent with scientific and engineering intuition? Later in the
validation process these informal evaluations may need to be quantified and incorporated in the
“formal” process. Sensitivity analyses may, in some respects, be considered part of evaluation if,
for example, the sensitivities confirm (or conflict with) scientific judgment. We defer discussion of
sensitivity to Section 10.1.

The evaluation criteria can introduce complexities that would need to be addressed at Steps 4
- 6, but may also affect the choices made here. For example, an evaluation criterion that leads to
comparisons of curves or surfaces or images places greater demands on the analyst than simpler
scalar comparisons.

Of necessity, the specifications must take into account the feasibility of collecting data, particu-
larly field data, to carry out the validation. This can be further complicated by the need to calibrate

or tune the model using the collected data; the tuning itself being driven by the specifications.

SPOT WELD: Two evaluation criteria were initially posed:
I. Size of the nugget after 8-cycles
II. Size of the nugget as a function of the number of cycles

The first criterion is of interest because of the primary production use of the model; the second
as a possible aid in reducing the number of cycles to achieve a desired nugget size. Ideally the
evaluation would be based directly on the strength of the weld, but weld diameter is taken as
a surrogate because of the feasibility of collecting laboratory data on the latter. (Of course,
if nugget size is not strongly correlated with weld strength, these criteria would probably be
inappropriate.) In production, the spot welding process results in a multiple set of welds, but
the evaluation criterion considered here involves only a single weld. Criterion (II) was later
discarded as a result of the difficulty during data collection of getting reliable computer runs
producing output at earlier times than 8-cycles.

Specification of the feasible domains of the input variables is another aspect of formulating

the evaluation criteria. For the spot weld model, these domains are:
— Material: Aluminum 5182-O and Aluminum 6111-T4

— Surface: treated or untreated

Gauge (mm): 1 or 2
— Current (kA): 21 to 26 for lmm aluminum; 24 to 29 for 2mm aluminum

Load (kN): 4.0 to 5.3

Material and surface might enter the model through other input variables relating to properties
of materials. Our initial specification in Table 1 considers material, surface and gauge as fixed.
The tuning parameter, u, has the range indicated and is the only other input that is not fixed.

CRASH: For the first experiment the input consists solely of the impact velocity v. The
specific output data to be analyzed is the velocity of the “Sensing and Diagnostic Module”,

SDM, situated under the driver’s seat, relative to a free-flight dummy. This relative velocity is

obtained by subtracting the impact velocity v from the actual SDM velocity (it being assumed

13



that the dummy maintains velocity v over the time interval of interest). The resulting functions
vary (at least theoretically) between 0 at the time of impact ¢ = 0 and —v at the time the vehicle
is stationary.

The evaluation criterion we consider is the SDM velocity calculated 30ms before the time
the SDM displacement (relative to the free-flight dummy), DISP, reaches 125mm. Call this
quantity CRITV. The airbag takes around 30ms to fully deploy, which is why this particu-
lar evaluation criterion, CRITV, is important. Our analysis takes account of the dependence
between displacement and velocity (displacement is the integral of velocity) by working with
the probability distribution of the velocity and then finding the implied distribution of the
displacement.

The process we follow can be adapted to treat other evaluation criteria such as,
e Time at which SDM displacement reaches 125mm
e SDM velocity when SDM displacement reaches 250mm and 350mm
The evaluation criterion
e Velocity at the center of the radiator, RDC, 30ms before SDM displacement reaches 125mm

poses different issues because it requires a combined analysis of the functional data from two

sensors, one located at the radiator center, the other under the driver’s seat.

3 Data Collection (Step 3)

Both computer and field (laboratory or production) experiments are part of the validation and

development processes and produce data that are essential for

e Developing needed approximations to (expensive) numerical models

Assessing bias and uncertainty in model predictions

Studying sensitivity of a model to inputs

Identifying suspect components of models

Designing and collecting data that build on, and augment, existing, or historical, data.

The iterative and interactive nature of the validation and development processes will result in
multiple stages of computer experiments and even field experiments.

Typically, an effort is made to construct experiments that yield data over the ranges of what are
considered to be the key input values. For low-dimensional input spaces, this can be done rather
informally. For instance, in CRASH, the key inputs are the impact speed of the vehicle and the
collision barrier type. Table 2 exhibits the entire set of model inputs and measured field inputs for
the available data. The type of data resulting from each experiment is indicated in Figure 15 of

Appendix B.

When the input space is of larger dimension, it is preferable to use formal “space-filling” strate-

gies of choosing the input values at which to experiment. For instance, in the spot weld test bed

14



Impact velocity (km/h) barrier type Impact velocity (km/h)
used in model of field tests
19.3 straight frontal 19.3
25.5 straight frontal 25.5
28.9 straight frontal 28.9
32.1 straight frontal 32.1
35.3 straight frontal 35.3
38.4 straight frontal 38.4
41.3 straight frontal 41.3, 41.3
49.3 straight frontal | 49.4, 49.2, 49.4, 49.3, 49.3, 49.4
56.4 straight frontal 56.4
22.5 left angle 22.5
32.2 left angle 32.2
40.2 left angle 40.2, 41.4, 41.5
41.9 left angle 41.9
49.3 left angle 49.5, 49.2
56.2 left angle 56.2
57.3 left angle 57.3
28.9 right angle 28.9
31.9 right angle 31.9
41.7 right angle 41.7, 41.8
48.3 right angle 48.3
19.3 center pole 19.3
25.5 center pole 25.5
32.0 center pole 32.0
36.8 center pole 36.8
40.3 center pole 40.3
48.6 center pole 48.6

Table 2: Available input data

there is one discrete and three continuous input variables of major importance, and covering the
3-dimensional space with a limited number of runs (field or model) requires careful experimental
design. Among the most useful designs in such contexts is the Latin Hypercube Design (McKay,
Conover and Beckman(1979)). We utilize code from W. Welch to produce such designs.

SPOT WELD: For the spot weld model there was limited model data about the tuning pa-
rameter u. The initial computer experiment was therefore aimed at assessing the effect of u.
The inputs to be varied are C' = current, L = load, G = gauge, and u. The other inputs
were held fixed. The cost — thirty minutes per computer run — is high so a limited number,
26, of runs were planned for each of the two gauge sizes. The 26 runs for 1 mm metal covered
the 3-dimensional rectangle, [20,27]x[3.8,5.5]x[1]x[1.0,7.0], in C, L, G, u space, while those for
the 2mm metal covered the 3-dimensional rectangle, [23,30]x[3.8,5.5]x[2]x[0.8,8.0]. The explicit
design values obtained from the Welch code are in Table 3, along with the model output and
the corresponding laboratory data for the nugget diameter.

The computer runs exhibited some aberrant behavior. Many (17) runs failed to produce a
meaningful outcome at cycle 8; these runs were eliminated. For reasons that are not yet clear

many runs were unable to produce reliable data for earlier cycle times; as a result evaluation
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criteria depending on early cycle times were abandoned. The data retained (35 runs) are used

in the subsequent analyses.

Gauge U Load | Current | Nugget Gauge U Load | Current | Nugget
Dia. Dia.
( O &N | kA | mm) | | () | (N) | (kA) | (mm)
6.52 | 4.072 26.44 - 4.544 | 3.936 27.76 7.15
4.60 | 4.684 | 21.68 5.64 5.696 | 4.14 25.52 6.39
3.64 | 5.024 | 23.64 - 1.088 | 4.684 28.32 6.38
7.00 | 4.412 23.36 - 0.8 | 4.276 24.40 4.87
6.76 | 4.888 25.04 - 3.68 | 4.412 26.08 6.47
1.00 | 4.82 22.52 4.36 4.832 | 4.616 23.00 6.68
3.40 | 4.616 27.00 - 7.136 | 4.344 27.20 6.71
5.32 | 4.48 20.84 6.12 4.256 | 5.228 24.68 6.54
2.92 | 5.092 20.56 5.00 3.392 | 4.004 23.28 5.97
1.48 | 5.364 21.12 4.53 1.952 | 4.48 23.84 5.72
2.20 | 4.004 21.40 5.20 2.528 | 3.8 24.96 6.23
2.68 | 4.344 | 25.88 - 2.24 | 4.208 29.72 -
2.44 | 5.50 23.08 - 1.376 | 5.024 25.80 5.46
4.36 | 3.80 25.32 - 7.424 | 4.072 28.88 -
1.24 | 4.208 24.76 6.06 6.272 | 4.548 29.16 7.36
6.04 | 4.752 20.00 - 6.848 | 5.364 23.56 -
3.968 | 4.888 29.44 7.16
3.104 | 5.432 28.60 6.61
5.12 5.5 26.64 5.98
6.56 | 3.868 26.36 6.74
5.984 | 4.956 24.12 5.32
8 5.092 28.04 -
2.816 | 4.82 26.92 6.70
5.408 | 5.16 30.00 -
1.664 | 5.296 27.48 6.02
7.712 | 4.752 25.24 5.50

~—
~—

5.56 | 5.432 25.60 -
1.96 | 4.956 26.16 6.69
5.80 | 3.936 23.92 7.17
4.84 | 4.14 22.80 -

3.16 | 3.868 22.24 5.71
6.28 | 5.228 21.96 5.38
1.72 | 4.548 24.20 5.85
5.08 | 5.16 26.72 -

4.12 | 5.296 24.48 6.87
3.88 | 4.276 20.28 4.91

>—l>—~r—~>—~>—l>—l>—lr—~>—~r—~>—l>—l>—~r—~r—~>—l>—l>—lr—~r—~>—l>—l>—l»—~r—~r—~§
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Table 3: Spot weld data from 52 model runs. Run failures indicated by —

To provide insight into the space-filling nature of the Latin Hypercube Design used for gauge=1
in Table 3, the 2-dimensional projections of this design are shown in Figure 1. An important feature
of such designs is that they exercise the code over a wide range of inputs and often unearth code
difficulties (for example, in Table 3 there were many failed runs for reasons not yet determined).
Such designs are effective for a wide variety of purposes (sensitivity analyses, response surface
approximations to model output, predicting outcomes of the specified evaluation criteria). In
contexts where initial computer experimentation points to narrowing, or altering, the region for
exploration specified in Step 2, new designs or augmentation of an initial design must be found.
For extremely expensive model runs (or field runs), sequential designs might be considered, where
each additional design point is chosen ‘optimally’ based on the information from previous runs.

Field data will usually be harder to obtain than computer experimental data. As a result,

designing the field data will depend more crucially on the specifications in Section 2.2 and specific
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Figure 1: Latin Hypercube Design used for spot weld

methods cannot be stated in advance.

In Sections 4, 5 and 7 we set down an informal description and assumptions for the computer
model data and field data. This includes consideration of calibration parameters, function output
and the treatment of the arguments of such functions. A more formal description can be found in
Bayarri et al. (2002).

4 Model Approximation (Step 4)

It is often of interest to see the effect of uncertainty in model inputs on model outputs. When the
code is cheap to run, then straight simulation (i.e., randomly generate input variables from their
distributions and compute the corresponding model outputs) is a practical option for determining
the output distribution. More refined methods relying on pseudorandom (e.g., Latin hypercube)
generation of inputs can also be employed — at least when the number of input variables is modest
— and somewhat extend the range of applicability of straight simulation. None of these techniques
are feasible, however, for expensive codes, and one must then resort to model approximations to
obtain output distributions. Such approximations can also be useful in their own right, for at least

the following reasons.

e It might not be feasible to directly employ the model ‘in the field’, whereas a fast approxi-

mation to the model could be directly employed.

e [t is often desired to perform an optimization over inputs. Common optimization algorithms

can be too expensive to implement with the computer model, but can be implemented with
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the approximation (or at least the approximation can be used to significantly narrow the

range of input values over which optimization with the computer model needs to be done).

e Finding optimal designs for additional model-development or validation experiments can re-

quire a fast approximation to the computer model.

e In Step 5, we will make crucial use of model approximations in implementing the calibration

and validation methodology.

There are four basic techniques that can be useful in model approximation: (i) use of mod-
els having lower resolution (e.g., larger mesh size) or including only significant basis elements
(based on, e.g., Proper Orthogonal Decomposition or Principal Components methods); (ii) lin-
earization/Gaussian error accumulation; (iii) response surface methodology, including Gaussian
processes and neural networks; (iv) Bayesian networks, which allow uncertainty transference be-
tween sub-models from which the model is constructed. The first technique is always an option,
and can be combined with the other methods; of course, evaluation of the error introduced by using
a model of lower resolution (or with a smaller basis) can be difficult. The second technique, which
essentially linearizes the model so that (Gaussian) input distributions can be passed through the
model using linear Gaussian updating, is useful if it is feasible to work with the underlying code of
the model and if linearization does not introduce severe bias. The use of Bayesian networks is not
addressed here.

A very useful general tool, for models whose output depends smoothly on inputs (very common
in engineering and scientific processes), is the response surface technique. (It should be noted that,
even when the underlying process is not a smooth function of the inputs, one is often primarily
interested in features of the output that are smooth.) The approach we recommend has been
successfully used when the number of input variables is less than 20 (typically requiring less than
10 runs per input) and even as high as 40 (although then several hundreds of model runs may be
needed for accurate fitting). Below we briefly describe this technique. The particular technique we

recommend meshes well with the validation analysis proposed in Step 5.

Notation: Denote model output by y™(z,u), where x is a vector of controllable inputs and u
is a vector of unknown calibration and/or tuning parameters in the model. Sometimes we write
z = (x,u).

In specific examples w may be absent. The goal is to approximate y™ (z, u) by a function §™ (x, u),
to be called the model approzimation, which is much easier to compute. In addition, it is desirable
to have a variance function VM (z,u) that measures the accuracy of §™ (x,u) as an estimate of
y™(
sponse surface approximation (GASP), described in Sacks et al. (1989) and Kennedy and O’Hagan

x,u). A response surface approach that achieves both these goals is the Gaussian process re-

(2001); the approach is outlined below.

SPOT WELD: The vector of controllable inputs is & = (C, L, G), the tuning parameter is
u. Use of GASP with the data from Table 3 leads to the response surface approximation to
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y™(C, L,G,u) that is exhibited in Figure 2. We do not explicitly show the variance function,

but it is available. For instance, at (C,L,G,u) = (26,5,2,4), the response surface approx-

imation to y*(26,5,2,4) is 9 (26,5,2,4) = 6.12, and the variance of the approximation is
VM(26,5,2,4) = 0.0046. At the values of the actual model data of Table 3, i.e. the solid dots in
the figures below, the response surface approximation is exact; it ‘passes through’ these points.
The slight up-curve at the edges, for extreme values of u, occurs because the model data in those
regions is very sparse and an overall mean level was used in the GASP analysis (as opposed to,
say, a linear function). This has essentially no effect on ultimate predictions, since we will see
that the central values of u are those that are most relevant.

E §2 §% £
€ o o o~
— -9 ° S
20 'S 20
1 ER 2 [E3
(0] 3020 =
=] 2%
=
©
)]
£
o
& §2 £9 co Eo
I o~ B S® S ®
o9 - © B~ 5~
) 29 392 9 -9
o = B 0% 29
=) 30 E E
© 28
o <6

Figure 2: GASP response surface approximation § to y™ for the spot weld model, constructed
from the data in Table 3. The surfaces show estimated weld diameter, for the two gauge values, as
a function of load and current for various values of the tuning parameter u. The solid dots denote
model data y™ (C, L, G,u) and are plotted on the surface corresponding to the closest value of .

CRASH: The controllable inputs are = (v, B), where v is the impact velocity and B is the
barrier type. There is no tuning parameter.

Let yM = (yM(x!,u'),...,y™(x™,u™)) denote the vector of m evaluations of the model at
the inputs DM = {(z’,u) : i =

1,...,m}. The computer model is exercised only at the inputs
DM so that yM(z) = yM(x,u) is effectively unknown for other inputs z = (z,w). Thus, in
the Bayesian framework, we assign ¥y (z) a prior distribution, specifically, a stationary Gaussian
process with mean and covariance functions governed by unknown parameters. (In application, we
always only deal with a finite set of z;, in which case the Gaussian process at these points reduces to

a multivariate normal distribution.) Choice of the mean function is discussed below, but discussion
of the covariance function is delayed until Appendix C.1.
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The mean function of the Gaussian process will be assumed to be of the form ®(-)8* where
W(z) is a specified 1 x k vector function of the input z and 0" is a k x 1 vector of unknown
parameters. A constant mean (k = 1, U(2) = 1, and 8% = ) is often satisfactory, if one plans
only to use the model approximation within the range of the available model-run data, but a more
complicated mean function can be useful if the model approximation is to be used outside the range
of the data. (When outside the range of the model-run data, the Gaussian process approximation
to the model will gradually tend towards its estimated mean function, so that an accurate estimated
mean function will provide more accurate model approximations.) This can be especially important
when features such as seasonal trends are present. Formally, the mean function above does not
allow the presence of a known constant (e.g., ¢ + \Il(-)OL), but this can be easily accommodated
by carrying out the analysis with the Gaussian process defined by subtracting ¢ from the original
process.

A secondary benefit of introducing a mean function that is a reasonable approximation to the
model is that it will often result in smaller variances for the model approximations. If, however, a
more complicated mean function is used but is not a more reasonable approximation to the model,
it will result in larger variances, since it will contain more parameters that must be estimated.
No firm guidelines are available as to whether a simple mean function or a carefully developed
mean function are best. Our recommendation is to try to incorporate into the mean function any
obvious trends that exist in the model output but, again, even a constant mean function is often

satisfactory.

CRASH: The computer model output corresponding to velocity, in a typical case, is indicated
in Figure 15 (the curve on the right). Such curves are clearly better modeled by a linear function
of time than a constant in time. Furthermore, we know the initial velocity v of the vehicle, so
use of the mean function v(1 — #%t) for the Gaussian process will clearly do a better job of
approximating the computer model than would a constant mean. (It should be emphasized,
however, that the methodology will typically provide accurate within-sample approximation
to the model output no matter what mean function is chosen for the Gaussian process.) We
actually follow common practice in this area and first transform the data by subtracting the
initial velocity, leading to what are called ‘relative velocity’ curves; for relative velocity curves,
the natural mean function would be —f%vt, corresponding to choosing k = 1 and U(v,t) =—wvt
in the above notation. Note that since the theoretical range of the relative velocity is from 0 (at
time ¢ = 0) to —v (at time ¢,, when the vehicle reaches stationarity), # can here be interpreted

as 1/ts.

For specified values of the parameters (such as o ) of the Gaussian process, the GASP behaves
as a Kalman Filter, yielding a posterior mean function that can be used as the fast approximation
to yM(-) together with a variance measuring the uncertainty in the approximation. (Details are
given in Appendix C.1.) Note that this variance is zero at the design points at which the function

was actually evaluated. The model approximation obtained through the GASP theory can thus
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roughly be thought of as an interpolator of the data, unless there is numerical instability in the
computer model, as mentioned in footnote 2, in which case the approximation smoothes the data.
Unfortunately, the parameters (such as o ) of the Gaussian process are rarely, if ever, known.

Two possibilities then arise:

a) Plug-in some estimates, for instance maximum likelihood estimates (as in the GASP software

of W. Welch — see also Bayarri et al. (2002)), pretending they are the ‘true’ values.

b) Average over the posterior distribution of the parameters, in a full Bayesian analysis (as

described in Section 5).

The full Bayesian analysis is typically superior, in the sense that the resulting variance of the
model approximation will more accurately reflect reality, since the parameters are unknown. In
terms of the actual model approximation ¢ (z,u), however, use of maximum likelihood estimates
of the parameters typically yield much the same answers as the full Bayesian analysis, and so may
be preferable in computationally intensive situations.

The particular GASP approach that we use has the added bonus that certain types of stochastic

inputs, z, can easily be handled within the same framework; see Appendix C.2 for details.

5 Analysis of Model Output (Step 5)

In this section, we describe the basics of the statistical modeling and analysis that are used for
model evaluation. For illustration in this section we use only SPOT WELD, since CRASH has a

functional data structure that we do not introduce until Section 7.

5.1 Notation and statistical modeling

The model is an approximation to reality. Another way of saying this is that the model is a biased
representation of reality, and accounting for this bias is the central issue for model validation. There

are (at least) three sources for this bias:

1. The science or engineering used to construct the model will typically be incomplete.
2. The numerical implementation may introduce errors (e.g., may not have converged).

3. Any tuned parameters will typically be in error.

Furthermore, the model alone cannot provide evidence of bias. Either expert opinion or field data is
necessary to assess bias — we focus on the latter. If field data are unavailable (even from experiments
involving related models), strict model validation is impossible. Useful things can still be said, but
the ultimate goal of being able to confirm accuracy of prediction will not be attainable.

Recall that we denote by y™(z,u) the model output when (x,u) is input. When u is not

present, as in CRASH, we can statistically model “reality = model + bias” as
yR(x) = yM(x) + b(x), (5.1)
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where y®(x) is the value of the ‘real’ process at input x and b(z) is the unknown bias function,
arising from the sources discussed above. When w is present we call its true (but unknown) value

«* and then model the bias via

y" (@) = y" (@, u") + b(x). (5.2)
Field data at inputs @1, xs,...,x, are obtained, and modeled as
y" (i) =y (@) + e (5.3)

where the €/ are independent Normal random errors with mean zero and variance 1/Af". Note that
u is not an input in determining the field data. (We could have included w* in the definition of
y® and b, but that would have simply been extra notational burden.) These assumptions may only
be reasonable after suitable transformations of the data and, in any case, more complicated error
structures can be easily accommodated. For example, the eZF can have a correlated error structure;
indeed, this will be seen to be the case in dealing with CRASH.

The assumption that €/ has mean zero is formally the assumption that the field observations
have no bias. If the field observations do have bias, the situation is quite problematic, in that
presumably the field experiments were designed so as to eliminate bias, yet failed to completely do
so. If bias does exist in the field observations, there is no purely data-based way to separate the field
bias from the model bias; expert opinion would typically be needed to make any such separation.
Estimates of bias that arise from our methodology could still be interpreted as the systematic
difference between the computer model and field observations, but this is of little interest, in that
prediction of reality (not possibly biased field data) is the primary goal. Note that it is quite
common for ‘existing field data’ to itself be biased (see, e.g. Roache, 1998), and obtaining unbiased
field data is perhaps the most crucial aspect of model validation. See Trucano et al. (2002) for
extensive discussion.

Assuming computation of yM is fast, Bayesian analysis now proceeds by specifying prior distri-

butions for unknown elements of the model,
— the probability density p(u) for u, which we take to be that specified in the I/U map;

— a prior density p(A\F) for the precision (the inverse of the variance) of the field measurement

error — see Bayarri et al. (2002) for description of the prior we use;
— a prior density for the bias function b(x) (see Appendix D.1),

and utilizing Bayes theorem. (For full details on these priors see Bayarri et al. (2002)). Typically,
however, y™ is a slow computer model and we will then need to also incorporate the model approxi-
mation from Section 4 into the Bayesian analysis, so that the model output y* is then viewed as the
Gaussian process discussed therein. (This will be necessary in both the SPOT WELD and CRASH
test beds, since the corresponding computer models are too expensive to run directly within the

Bayesian computation.)
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5.2 Bayesian inferences

Section 5.3 discusses implementation of the Bayesian analysis. Here we focus on discussion of the
possible outputs of the analysis. The basic output from the Bayesian analysis is the posterior
probability distribution of all unknown quantities, given the models and the data (model-runs
and field). The key feature of the Bayesian approach is that this distribution incorporates all
uncertainties in the problem, including uncertainties as specified in the I/U map and measurement
errors in the data. From this probability distribution, a variety of quantities of interest can be

computed and analyses made.

5.2.1 Calibration/tuning

Using field data to bring the model closer to reality, tuning, is often confused with calibration, the
process by which unknown model parameters are estimated from data. The distinction is that,
in calibration, one tries to find the true — but unknown — physical value of a parameter, while
in tuning one simply tries to find the best fitting value. Calibration and tuning parameters are
mathematically the same and are therefore treated identically in the analysis, but conceptually
there is a potentially significant difference. Tuning will tend to give a better model for prediction
with inputs in the range of the field data, but may well give worse predictions outside this range.
For this reason, it is not uncommon for modelers to limit the extent of tuning. This can be done, if
desired, by simply restricting the allowed range of variation in the tuning parameter (or the spread
in the prior distribution of the tuning parameter) in the I/U map.

One often hears that data used for calibration/tuning cannot simultaneously be used for model
validation. However, Bayesian methodology does formally allow such simultaneous use of data.
In part, this is because Bayesian analysis does not simply replace the parameter by some optimal
‘tuned’ parameter value @, but rather utilizes its entire posterior distribution, which reflects the

uncertainty that exists in the value of the parameter.

SPOT WELD: The vector of controllable inputs is « = (C, L, G) and the tuning parameter is u.
(This could also be viewed as a calibration parameter, since it corresponds to an unknown feature
of the contact resistance which is, in essence, being estimated from the field data.) As mentioned
above, the Bayesian analysis produces complete posterior distributions for the unknowns in the
model. For instance, Figure 3 gives the posterior density of u. The optimal tuned value of u is
the mean of this distribution, which is & = 3.96. Note that there is considerable uncertainty in
this value, and the Bayesian analysis will take this uncertainty into account in all assessments of
variance and accuracy. Doing so also helps alleviate the type of over-tuning that can result if one
were to simply pick and use the best-fitting parameter value. In this regard it is also interesting
to note that the two main modes of the posterior correspond to tuning on the gauge=1mm and
2mm data separately; use of either data-set alone would likely have worsened the situation in

regards to over-tuning.
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Figure 3: The posterior distribution of the tuning parameter w.

5.2.2 Predictions and bias estimates

Assume we want to predict the real process y(x,u*) at some (new) input x. The preferred
approach is to base this prediction on the output from a new model run at input x (Case 1).
Sometimes this is not feasible (as when it is desired to produce a grid of predictions, as in Figure
4), and then predictions must be based on use of the model approximation (Case 2). We describe

the analysis separately for these two cases.

Case 1. Predictions utilizing a new model run: When using a new model run (a new piece
of data) for predicting the underlying process y™(z,u*), we have at least two options. First, we
can simply obtain an estimate & and run the model at inputs (z, %) to obtain a prediction; this
will be called model prediction. The second and much preferred approach is to use bias-corrected
prediction, in which the model prediction is corrected by an estimate of the bias. The predictors,
their bias, and their associated variances, are specified below (with full details given in Subsection
5.3).

Model prediction: The most commonly used predictor of yf(x,u*) is y (x,u), for some
estimate @ of the tuning parameter. (We recommend use of the posterior mean of w, but the
argument applies to any estimate). The accuracy of this estimate is determined by its variance,
Vi (), which is one of the outputs of the Bayesian analysis.

It is often of separate interest to estimate the bias of the prediction y™ (z,). This is given by

by (x) =y (@) —y" (x, @), (5.4)

The variance of this estimated bias is also available from the Bayesian analysis.

SPOT WELD: For G=2, L=4.888 and C=29.44, and using the posterior mean 4 = 3.96,

the pure model prediction, resulting from running the computer model at these inputs, is
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7 (4.888,29.44,2,3.96) = 7.16. The variance of this prediction is V3.9 (4.888,29.44,2) = 0.628,
and the estimated bias of the prediction is bs3.96 (4.888,29.44,2) = 0.342.

Bias-corrected prediction: An important observation is that one can improve upon the

pure model prediction y™ (z,). Indeed, since an estimate of the bias is available, it is clear that

§"(x) = y™M(z, @) + by (x) (5.5)

would be the optimal predictor of the actual process value yR(a:). Furthermore, the variance of
this improved prediction can be shown to be (Vg () — [bg, ()]?), which can be significantly smaller

than the variance, V (), of the pure model prediction.

SPOT WELD: For G=2, L=4.888 and C=29.44, and using the posterior mean 4 = 3.96,
the bias-corrected prediction is §%%(4.888,29.44,2) = 7.16 + 0.342 = 7.50, with a variance of
0.628 — 0.342% = 0.512. Bias-correction here has not resulted in a significantly reduced variance
(compare with 0.628 for the pure model prediction), because the amount of bias was rather
modest at this input value. We will see in Figure 6 that the bias can be significantly greater (as

high as 1.0) at other input values.

There are several important subtleties in the above analysis. The first is that, in principle, a
superior model prediction could be obtained by ‘averaging’ y™ (z, ), at the new input x, over
the posterior density of w. This cannot be done, however, if the model is expensive to run. The
recommended analysis in (5.5) achieves a compromise by utilizing the information from the new
model run, y™ (z,4), but also averaging y™ (z,u) over other values of u through the fast model
approximation. A related point is that the bias defined in (5.4) is different than that defined earlier
in (5.1); this earlier bias was defined relative to the true (but unknown) value w*, rather than the
estimated value w. The Bayesian analysis properly accounts for this definitional difference in the

analysis.

Case 2. Approximate prediction, based solely on previous model runs: If it is not feasi-
ble to evaluate y™ (z, ) at the new input value @ (for instance, if prediction is desired at many new
inputs), one can still proceed with prediction of 3 (2, u*), using the model approximation 7™ (x, u).
Indeed, since the model approximation is fast, ‘averaging’ the model approximation ¢ (x,u) over
the posterior density of u, is now feasible, which would lead to bias-corrected prediction. We also
consider pure model prediction, which is here given by §™ (x, @), and the corresponding estimated

bias function, defined analogously to (5.4).

SPOT WELD: Using solely the previous model runs (and field data), and the model ap-
proximation ¢, Figure 4 gives the pure model predictions 4 (L, C, G, ), the estimated bias
functions Ba(L, C, @), and the bias-corrected predictions §™ (L, C, G, i) + l;ﬁ(L, C,G), as dis-
cussed above, for the spot weld model. For each gauge, these are presented as surfaces (as a
function of L and C), with the height again being the predicted weld nugget diameter.
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Figure 4: For a Case 2 analysis using only previous model runs, Left figures: the weld diameter
predictions ™ (L, C, G, 4) from the model approximation; Middle figures: the biases B@(L, C,G);
Right figures: the bias-corrected predictions ™ (L, C, G, 1) + B@(L, C,G). The circles represent the
field data that were utilized in this analysis.

Note that the information obtained by running the computer model to obtain y™ (x, %) can
considerably improve the prediction (and reduce the variance of the prediction), so the Case 1
analysis should be done, when possible. This is particularly true when ‘local’ predictions are being
made, such as predicting the effect of changing from input x to input ', where & and x’ are close. It
will often then be the case that the pure model prediction of the difference, y (z, w)— yM ('), is
close to the optimal bias-corrected prediction, g)R(a:’ ) — g)R(:c), and has much smaller variance than
if the same prediction were made based on the fast model approximation alone. The reason is that
the bias, being smooth, essentially cancels when one computes the difference of model predictions
at close values of the input. The bias would also cancel in the analysis based on the fast model
approximation, but the comparatively significant uncertainty in the fast model approximation (as
an estimate of the actual computer model) will remain. On the other hand, for simply predicting
the process at a new input, the size of the bias correction will often be more significant than the
uncertainty in the fast model approximation.

This helps to explain the often-heard comment by modelers that, even when the overall model
predictions are not particularly accurate, predictions of process changes arising from small changes
in inputs often seem to be quite accurate. It also partly explains why statistical analysis of the
field data alone does not yield as useful predictions as analysis which incorporates the model infor-
mation. For some global predictions, the statistical analysis alone might be nearly as good, but for

exploring fine details of the process under study, the information from the computer model typi-
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cally dominates. This discussion also underscores the fundamental importance of using a method

of analysis that can accommodate, and properly weight, these different types of information.

5.2.3 Tolerance bounds

Predictive accuracy statements, such as “with probability 0.90, the prediction is within a specified
tolerance 7 of the true y(x)” are obtainable from the Bayesian analysis and provide a single simple
measure of the effectiveness of the computer model. These can be obtained both with, or without,
running the model at the (new) input @ (Cases 1 and 2, respectively) and correcting or not for

bias. Recall that bias correction results in smaller variances.

Case 1. Obtaining a new model run at input & improves prediction and results in tighter tolerance

bounds.

SPOT WELD: For G=2, L=4.888 and C=29.44, and using the posterior mean 4 = 3.96, the
pure model prediction was § (4.888,29.44,2,3.96) = 7.16. The 5% and 95% percentiles of the
posterior distribution give the 90% tolerance bounds, which, in this case, are (6.02,8.30). Sim-

ilarly, the bias-corrected prediction is 7.50, with associated 90% tolerance bounds (6.15,8.30).

Case 2. If it is not feasible to obtain a new model run, or we have to give tolerance bounds for
many new inputs (as when drawing a graph), then predictions, and tolerance bounds are based
only on the previous model runs (and field data). Note that the resulting tolerance bounds will

typically be wider.

SPOT WELD: Figure 5 provides 90% tolerance bands for two typical cases, one of low load
(L = 4.0) and one of high load (L = 5.3), for each of the two gauges. In particular, the graphs
present the pure model and bias-corrected predictions, and the error bands are 90th percentile
bands for y (x, @) and §(x). Thus, for the top figures, there is a 90% probability for a specified
current, load, and gauge that the real nugget size lies between the upper and lower dotted lines;
the model approximation ™ (x, ) at the optimal value of @ = 3.96 (see Figure 2) is indicated
by the solid line. Note that the errors for the bias-corrected predictions (see the lower figures)

are considerably smaller.

5.2.4 TUncertainty decomposition

Bayesian analysis not only allows for incorporation of all uncertainties into the accuracy statements,
but also enables decomposition of the uncertainty into its component parts. For instance, in the
overall model we use for SPOT WELD, there are three sources of error: uncertainty in the tuning
parameter u, uncertainty in the bias function b(x), and uncertainty in the residual error ef" (which
can arise from random error in the field data and/or randomness inherent in the actual process).

One can separately assess, and report, the variation inherent in each of these sources, which can
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Figure 5: A posterior summary of the error associated with predictions in the Case 2 scenario (i.e.,
when only previous model runs are utilized). As a function of current for low (L = 4.0, left column)
and high (L = 5.3, right column) loads, the top graphs show the model approximation gM (x,q)
(solid line) and 90th percentile bands for the pure model predictions. The bottom row of the figure
presents the same for the bias-corrected predictions §%(x). The dots indicate the observed field

data.

be important for determination of sensitivities and for improving the model. (Indeed, this aspect

of the analysis can be considered to be a part of ‘sensitivity analysis’, as discussed in Section 10.1.)

Case 1.
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SPOT WELD: For G=2, L=4.888 and C=29.44, and using the posterior mean 4 = 3.96, the
prediction was 7 (4.888,29.44,2,3.96) = 7.16. The three sources of error in this prediction

and their relative importance can be judged by decomposing the 90% tolerance interval into

intervals corresponding to each estimated quantity. The 90% interval for y™ (4.888,29.44,2, u)

(with u being considered as the unknown and random quantity) is (6.50,7.56); the interval
for b(4.888,29.44,2) is (—1.00,1.24); and the additional variability of the interval, induced by
uncertainty in €', is (—0.71,0.71).

Case 2.

of the inputs, it will typically be necessary to use the analysis based on only previous model runs.

If it is desired to graph the uncertainty due to each of the sources of error, as a function
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SPOT WELD: The uncertainty associated with each of the unknown elements of the problem
(u,b(x), and €') is presented in Figure 6. The top graphs present percentiles for y™ (z,u),
and indicates the effect of the uncertainty in u. The second and third graphs indicate the
percentiles for b(L, C,G) and for ¥, respectively. Interestingly, all three sources of uncertainty
contribute comparable amounts (as measured by the width of the percentile bands) to the overall
uncertainty. Clearly, ignoring any of these sources of uncertainty can lead to overconfidence in
prediction. (Note that the constant lines corresponding to the residual error are a feature of the
model used; it was assumed that the residual error does not depend on x.)
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Figure 6: A posterior summary of the contributions of each source of uncertainty to the overall
uncertainty of predictions under a Case 2 analysis. The top graphs show pointwise 90th percentile
bands for y (x,u) (with u being considered as the unknown and random quantity) as a function
of current for low (L = 4.0, left column) and high (L = 5.3, right column) loads. The middle row
of graphs shows 90th percentile bands for b(L,C, G). The bottom row shows 90th percentile bands

for f.
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5.3 Outline of the Bayesian methodology

We first consider the case in which the computer model is fast (so y is treated as a known function,
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and no model approximation is needed). We recall the modeling assumptions from Section 5.1:

y () + "
yM(x, uw) + b(x)
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"~ N(,1/\F).

These produce a multivariate normal density for the collection of all field data, y’', which we
shall denote by f(y® | u,\",b). (Strictly, we should write u* instead of w but, in the Bayesian

approach, all unknowns are considered to be random and so we will drop the *

superscript for
notational simplicity.) The prior distribution of the unknown elements u, A, b of the model will be
denoted by p(u, A, b) and is described in Appendix D.2. Bayes theorem then yields the posterior

density of these unknowns, given the data y!’, as
p(u, A0 | yf) o f(yF | u, A, b)p(u, AF,b). (5.6)

To actually compute the posterior density, one would need to determine the normalizing constant
that makes the expression on the right hand side of (5.6) integrate to one. It will typically be
necessary to deal with this posterior distribution by Markov chain Monte Carlo (MCMC) analysis
(cf. Robert and Casella, 1999), however, and for this the normalizing constant is not needed. The

result of the MCMC analysis will be, say, N draws from this posterior distribution of the unknowns

u, \f' and b. Call these samples ui,)\f and b;,7 = 1,...N. From these samples, the posterior
distribution of any quantities can be estimated. (Thus Figure 3 is just a smoothed histogram
arising from the samples of the u; generated from the SPOT WELD posterior distribution.)

The estimate of the unknown w is now simply u, the average of the w;. (This is the estimated

posterior mean from the MCMC analysis.) Similarly, the estimated bias function is given by

b(zx) = bi(x)

1
N =

To predict the real process, y(x), at any input 2 we have two options:

Model prediction: Here the prediction of the real process at input @ is simply given by
yM(x, ). We recommend using the posterior mean as the estimate of u, but analysis can be done
for any estimate, such as the maximum likelihood estimate or any ad-hoc tuned estimate. The

estimated bias of this prediction is given from the MCMC by

ba(e) = 5 2 [ (@) + ()| =y (@) (5.7)

1
i=1

The variance, Vg, (), associated with the model prediction y™ (z, @), is computed as

N

V(@) = bu(@) + 5 3 [v" (@) + o)~ ") (538)

where §(z) is the bias-corrected prediction, which is computed as in (5.9). Note that it is nec-

essary to use the MCMC computational analysis to obtain the estimated bias and variance of the
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prediction, so that there is no gain in efficiency of computation in using the pure model predictor
yM (@, a).
The posterior probability that y (x,4) is within a specified tolerance 7 of the true yf(x) is

simply estimated by the fraction of the samples (u;, b;) for which |y™ (z, @) —[y™ (x, u;)+b;(x)]| < 7.

Bias-corrected prediction: It is optimal to use the bias-corrected predictor, given by the

MCMC estimate of the posterior mean of the true process at , namely

| N
fx) = N Z {yM(waui) + bz(w):| : (5.9)

by () = 9" (x) —yM (z,a), (5.10)

thus making obvious its interpretation as the ‘bias’ of the predictor y™ (z, ). The bias, i)u(x), of
the pure model predictor is, in general, different from the prediction of the bias funtion i)(m) The

variance of the optimal predictor ¢ (x) is simply computed as:

N
N 2 @) 4w~ @] = Vale) -~ bal@)l (5.11)
=
Note that for large bias, the reduction from the previous Vi, () can be substantial.

The posterior probability that 7 (z) is within a specified tolerance 7 of the true y*(x) is simply
estimated by the fraction of the samples (u;,b;) for which | 9% (x) — [y™ (x,u;) + bi(x)]| < 7.

The difficulty with the above analysis is that it requires evaluation of y (x,u;) at each gen-
erated value of u; (and also at each of the data inputs @;), which is infeasible when model runs
are expensive. It is then necessary to use the Gaussian process approximation to y™, described
in Section 5, in order to carry out the computations. This (unavoidably) introduces additional
uncertainty into the predictions. The analysis, however, is very similar to the one just presented;

further details are given in Appendix D.2.

6 Feedback; Feed Forward (Step 6)

The analyses in Step 4 and Step 5 will contribute to the dynamic process of improving the model

and updating the I/U map by identifying
e Model inputs whose uncertainties need to be reduced

e Needs (such as additional analyses and additional data) for closer examination of important

regions or parts of the model

e Flaws that require changes in the model
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e Revisions to the evaluation criteria.

In SPOT WELD, for instance, the posterior distribution of u (Figure 3) will now replace the
uncertainty entry in the I/U map. Another aspect of feedback is use of the Step 4 and Step 5
analyses to further refine the validation process; e.g. to design additional validation experiments.

The feed-forward notion is t